Displaying 181 – 200 of 941

Showing per page

Completely positive matrices over Boolean algebras and their CP-rank

Preeti Mohindru (2015)

Special Matrices

Drew, Johnson and Loewy conjectured that for n ≥ 4, the CP-rank of every n × n completely positive real matrix is at most [n2/4]. In this paper, we prove this conjecture for n × n completely positive matrices over Boolean algebras (finite or infinite). In addition,we formulate various CP-rank inequalities of completely positive matrices over special semirings using semiring homomorphisms.

Complexity of computing interval matrix powers for special classes of matrices

David Hartman, Milan Hladík (2020)

Applications of Mathematics

Computing powers of interval matrices is a computationally hard problem. Indeed, it is NP-hard even when the exponent is 3 and the matrices only have interval components in one row and one column. Motivated by this result, we consider special types of interval matrices where the interval components occupy specific positions. We show that computing the third power of matrices with only one column occupied by interval components can be solved in cubic time; so the asymptotic time complexity is the...

Computation of some examples of Brown's spectral measure in free probability

Philippe Biane, Franz Lehner (2001)

Colloquium Mathematicae

We use free probability techniques to compute spectra and Brown measures of some non-hermitian operators in finite von Neumann algebras. Examples include u + u where uₙ and u are the generators of ℤₙ and ℤ respectively, in the free product ℤₙ*ℤ, or elliptic elements of the form S α + i S β where S α and S β are free semicircular elements of variance α and β.

Computing generalized inverse systems using matrix pencil methods

Andras Varga (2001)

International Journal of Applied Mathematics and Computer Science

We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state-space representation. We put particular emphasis on two classes of inverses: the weak generalized inverse and the Moore-Penrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational matrices can be computed as well. The main computational ingredient to determine generalized inverses is the orthogonal reduction of the system matrix pencil...

Condition numbers of Hessenberg companion matrices

Michael Cox, Kevin N. Vander Meulen, Adam Van Tuyl, Joseph Voskamp (2024)

Czechoslovak Mathematical Journal

The Fiedler matrices are a large class of companion matrices that include the well-known Frobenius companion matrix. The Fiedler matrices are part of a larger class of companion matrices that can be characterized by a Hessenberg form. We demonstrate that the Hessenberg form of the Fiedler companion matrices provides a straight-forward way to compare the condition numbers of these matrices. We also show that there are other companion matrices which can provide a much smaller condition number than...

Conjugacy and factorization results on matrix groups

Thomas Laffey (1994)

Banach Center Publications

In this survey paper, we present (mainly without proof) a number of results on conjugacy and factorization in general linear groups over fields and commutative rings. We also present the additive analogue in matrix rings of some of these results. The first section deals with the question of expressing elements in the commutator subgroup of the general linear group over a field as (simple) commutators. In Section 2, the same kind of problem is discussed for the general linear group over a commutative...

Consimilarity and quaternion matrix equations AX −^X B = C, X − A^X B = C

Tatiana Klimchuk, Vladimir V. Sergeichuk (2014)

Special Matrices

L. Huang [Consimilarity of quaternion matrices and complex matrices, Linear Algebra Appl. 331 (2001) 21–30] gave a canonical form of a quaternion matrix with respect to consimilarity transformations A ↦ ˜S−1AS in which S is a nonsingular quaternion matrix and h = a + bi + cj + dk ↦ ˜h := a − bi + cj − dk (a, b, c, d ∈ ℝ). We give an analogous canonical form of a quaternion matrix with respect to consimilarity transformations A ↦^S−1AS in which h ↦ ^h is an arbitrary involutive automorphism of the...

Currently displaying 181 – 200 of 941