The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
147
The sign pattern of a real matrix , denoted by , is the -matrix obtained from by replacing each entry by its sign. Let denote the set of all real matrices such that . For a square real matrix , the Drazin inverse of is the unique real matrix such that , and , where is the Drazin index of . We say that has signed Drazin inverse if for any , where denotes the Drazin inverse of . In this paper, we give necessary conditions for some block triangular matrices to have signed...
Rubinstein has produced a substantial amount of data about the even parity quadratic twists of various elliptic curves, and compared the results to predictions from random matrix theory. We use the method of Heegner points to obtain a comparable (yet smaller) amount of data for the case of odd parity. We again see that at least one of the principal predictions of random matrix theory is well-evidenced by the data.
A ring is feebly nil-clean if for any there exist two orthogonal idempotents and a nilpotent such that . Let be a 2-primal feebly nil-clean ring. We prove that every matrix ring over is feebly nil-clean. The result for rings of bounded index is also obtained. These provide many classes of rings over which every matrix is the sum of orthogonal idempotent and nilpotent matrices.
Let be a connected simple graph on vertices. The Laplacian index of , namely, the greatest Laplacian eigenvalue of , is well known to be bounded above by . In this paper, we give structural characterizations for graphs with the largest Laplacian index . Regular graphs, Hamiltonian graphs and planar graphs with the largest Laplacian index are investigated. We present a necessary and sufficient condition on and for the existence of a -regular graph of order with the largest Laplacian...
Currently displaying 21 –
40 of
147