Displaying 621 – 640 of 941

Showing per page

Orbit measures, random matrix theory and interlaced determinantal processes

Manon Defosseux (2010)

Annales de l'I.H.P. Probabilités et statistiques

A connection between representation of compact groups and some invariant ensembles of hermitian matrices is described. We focus on two types of invariant ensembles which extend the gaussian and the Laguerre Unitary ensembles. We study them using projections and convolutions of invariant probability measures on adjoint orbits of a compact Lie group. These measures are described by semiclassical approximation involving tensor and restriction multiplicities. We show that a large class of them are determinantal....

Patterns with several multiple eigenvalues

J. Dorsey, C.R. Johnson, Z. Wei (2014)

Special Matrices

Identified are certain special periodic diagonal matrices that have a predictable number of paired eigenvalues. Since certain symmetric Toeplitz matrices are special cases, those that have several multiple 5 eigenvalues are also investigated further. This work generalizes earlier work on response matrices from circularly symmetric models.

Pentadiagonal Companion Matrices

Brydon Eastman, Kevin N. Vander Meulen (2016)

Special Matrices

The class of sparse companion matrices was recently characterized in terms of unit Hessenberg matrices. We determine which sparse companion matrices have the lowest bandwidth, that is, we characterize which sparse companion matrices are permutationally similar to a pentadiagonal matrix and describe how to find the permutation involved. In the process, we determine which of the Fiedler companion matrices are permutationally similar to a pentadiagonal matrix. We also describe how to find a Fiedler...

Perimeter preserver of matrices over semifields

Seok-Zun Song, Kyung-Tae Kang, Young Bae Jun (2006)

Czechoslovak Mathematical Journal

For a rank- 1 matrix A = 𝐚 𝐛 t , we define the perimeter of A as the number of nonzero entries in both 𝐚 and 𝐛 . We characterize the linear operators which preserve the rank and perimeter of rank- 1 matrices over semifields. That is, a linear operator T preserves the rank and perimeter of rank- 1 matrices over semifields if and only if it has the form T ( A ) = U A V , or T ( A ) = U A t V with some invertible matrices U and V.

Currently displaying 621 – 640 of 941