A note on the ranks of set-inclusion matrices.
It is proved in this paper that special generalized ultrametric and special matrices are, in a sense, extremal matrices in the boundary of the set of generalized ultrametric and matrices, respectively. Moreover, we present a new class of inverse -matrices which generalizes the class of matrices.
We prove that if an n×n matrix defined over ℚ ₚ (or more generally an arbitrary complete, discretely-valued, non-Archimedean field) satisfies a certain congruence property, then it has a strictly maximal eigenvalue in ℚ ₚ, and that iteration of the (normalized) matrix converges to a projection operator onto the corresponding eigenspace. This result may be viewed as a p-adic analogue of the Perron-Frobenius theorem for positive real matrices.
A novel method for feature extraction and recognition called Kernel Fuzzy Discriminant Analysis (KFDA) is proposed in this paper to deal with recognition problems, e.g., for images. The KFDA method is obtained by combining the advantages of fuzzy methods and a kernel trick. Based on the orthogonal-triangular decomposition of a matrix and Singular Value Decomposition (SVD), two different variants, KFDA/QR and KFDA/SVD, of KFDA are obtained. In the proposed method, the membership degree is incorporated...
We present an analogue of the Harer–Zagier recursion formula for the moments of the gaussian Orthogonal Ensemble in the form of a five term recurrence equation. The proof is based on simple gaussian integration by parts and differential equations on Laplace transforms. A similar recursion formula holds for the gaussian Symplectic Ensemble. As in the complex case, the result is interpreted as a recursion formula for the number of 1-vertex maps in locally orientable surfaces with a given number of...