Displaying 781 – 800 of 941

Showing per page

Symmetric sign patterns with maximal inertias

In-Jae Kim, Charles Waters (2010)

Czechoslovak Mathematical Journal

The inertia of an n by n symmetric sign pattern is called maximal when it is not a proper subset of the inertia of another symmetric sign pattern of order n . In this note we classify all the maximal inertias for symmetric sign patterns of order n , and identify symmetric sign patterns with maximal inertias by using a rank-one perturbation.

Symmetric stochastic matrices with given row sums.

Ryszard Grzaslewicz (1990)

Revista Matemática de la Universidad Complutense de Madrid

Characterizations of extreme infinite symmetric stochastic matrices with respect to arbitrary non-negative vector r are given.

Technical comment. A problem on Markov chains

Franco Giannessi (2002)

RAIRO - Operations Research - Recherche Opérationnelle

A problem (arisen from applications to networks) is posed about the principal minors of the matrix of transition probabilities of a Markov chain.

Technical comment. A problem on Markov chains

Franco Giannessi (2010)

RAIRO - Operations Research

A problem (arisen from applications to networks) is posed about the principal minors of the matrix of transition probabilities of a Markov chain.

The 123 theorem of Probability Theory and Copositive Matrices

Alexander Kovačec, Miguel M. R. Moreira, David P. Martins (2014)

Special Matrices

Alon and Yuster give for independent identically distributed real or vector valued random variables X, Y combinatorially proved estimates of the form Prob(∥X − Y∥ ≤ b) ≤ c Prob(∥X − Y∥ ≤ a). We derive these using copositive matrices instead. By the same method we also give estimates for the real valued case, involving X + Y and X − Y, due to Siegmund-Schultze and von Weizsäcker as generalized by Dong, Li and Li. Furthermore, we formulate a version of the above inequalities as an integral inequality...

The Bernoullian of a Matrix. (A Generalization of the Bernoulli Numbers)

Esayas George Kundert (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si associano ad una matrice infinita di un certo tipo altre due matrici dello stesso tipo, dette rispettivamente bernoulliana e antibernoulliana di A. Si studiano alcune proprietà di queste matrici. Si ottiene in tal via una generalizzazione dei classici numeri di Bernoulli.

The Bruhat rank of a binary symmetric staircase pattern

Zhibin Du, Carlos M. da Fonseca (2016)

Open Mathematics

In this work we show that the Bruhat rank of a symmetric (0,1)-matrix of order n with a staircase pattern, total support, and containing In, is at most 2. Several other related questions are also discussed. Some illustrative examples are presented.

The classification of edges and the change in multiplicity of an eigenvalue of a real symmetric matrix resulting from the change in an edge value

Kenji Toyonaga, Charles R. Johnson (2017)

Special Matrices

We take as given a real symmetric matrix A, whose graph is a tree T, and the eigenvalues of A, with their multiplicities. Each edge of T may then be classified in one of four categories, based upon the change in multiplicity of a particular eigenvalue, when the edge is removed (i.e. the corresponding entry of A is replaced by 0).We show a necessary and suficient condition for each possible classification of an edge. A special relationship is observed among 2-Parter edges, Parter edges and singly...

The Collatz-Wielandt quotient for pairs of nonnegative operators

Shmuel Friedland (2020)

Applications of Mathematics

In this paper we consider two versions of the Collatz-Wielandt quotient for a pair of nonnegative operators A , B that map a given pointed generating cone in the first space into a given pointed generating cone in the second space. If the two spaces and two cones are identical, and B is the identity operator, then one version of this quotient is the spectral radius of A . In some applications, as commodity pricing, power control in wireless networks and quantum information theory, one needs to deal with...

The distribution of eigenvalues of randomized permutation matrices

Joseph Najnudel, Ashkan Nikeghbali (2013)

Annales de l’institut Fourier

In this article we study in detail a family of random matrix ensembles which are obtained from random permutations matrices (chosen at random according to the Ewens measure of parameter θ > 0 ) by replacing the entries equal to one by more general non-vanishing complex random variables. For these ensembles, in contrast with more classical models as the Gaussian Unitary Ensemble, or the Circular Unitary Ensemble, the eigenvalues can be very explicitly computed by using the cycle structure of the permutations....

Currently displaying 781 – 800 of 941