Displaying 101 – 120 of 147

Showing per page

On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution

A. Pajor, L. Pastur (2009)

Studia Mathematica

We consider n × n real symmetric and hermitian random matrices Hₙ that are sums of a non-random matrix H ( 0 ) and of mₙ rank-one matrices determined by i.i.d. isotropic random vectors with log-concave probability law and real amplitudes. This is an analog of the setting of Marchenko and Pastur [Mat. Sb. 72 (1967)]. We prove that if mₙ/n → c ∈ [0,∞) as n → ∞, and the distribution of eigenvalues of H ( 0 ) and the distribution of amplitudes converge weakly, then the distribution of eigenvalues of Hₙ converges...

On the matrix form of Kronecker lemma

João Lita da Silva, António Manuel Oliveira (2009)

Discussiones Mathematicae Probability and Statistics

A matrix generalization of Kronecker's lemma is presented with assumptions that make it possible not only the unboundedness of the condition number considered by Anderson and Moore (1976) but also other sequences of real matrices, not necessarily monotone increasing, symmetric and nonnegative definite. A useful matrix decomposition and a well-known equivalent result about convergent series are used in this generalization.

On the matrix negative Pell equation

Aleksander Grytczuk, Izabela Kurzydło (2009)

Discussiones Mathematicae - General Algebra and Applications

Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) i = 1 n X i - d i = 1 n Y ² i = - I with d ∈ N for nonsingular X i , Y i M ( Z ) , i=1,...,n.

On the maximal subgroup of the sandwich semigroup of generalized circulant Boolean matrices

Jinsong Chen, Yi Jia Tan (2006)

Czechoslovak Mathematical Journal

Let n be a positive integer, and C n ( r ) the set of all n × n r -circulant matrices over the Boolean algebra B = { 0 , 1 } , G n = r = 0 n - 1 C n ( r ) . For any fixed r -circulant matrix C ( C 0 ) in G n , we define an operation “ * ” in G n as follows: A * B = A C B for any A , B in G n , where A C B is the usual product of Boolean matrices. Then ( G n , * ) is a semigroup. We denote this semigroup by G n ( C ) and call it the sandwich semigroup of generalized circulant...

On the reduction of a random basis

Ali Akhavi, Jean-François Marckert, Alain Rouault (2009)

ESAIM: Probability and Statistics

For p ≤ n, let b1(n),...,bp(n) be independent random vectors in n with the same distribution invariant by rotation and without mass at the origin. Almost surely these vectors form a basis for the Euclidean lattice they generate. The topic of this paper is the property of reduction of this random basis in the sense of Lenstra-Lenstra-Lovász (LLL). If b ^ 1 ( n ) , ... , b ^ p ( n ) is the basis obtained from b1(n),...,bp(n) by Gram-Schmidt orthogonalization, the quality of the reduction depends upon the sequence of ratios...

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

Fatemeh Alinaghipour Taklimi, Shaun Fallat, Karen Meagher (2014)

Special Matrices

The zero forcing number and the positive zero forcing number of a graph are two graph parameters that arise from two types of graph colourings. The zero forcing number is an upper bound on the minimum number of induced paths in the graph that cover all the vertices of the graph, while the positive zero forcing number is an upper bound on the minimum number of induced trees in the graph needed to cover all the vertices in the graph. We show that for a block-cycle graph the zero forcing number equals...

Currently displaying 101 – 120 of 147