Semicanonical basis generators of the cluster algebra of type .
In this paper, we introduce a new kind of rings that behave like semicommutative rings, but satisfy yet more known results. This kind of rings is called -semicommutative. We prove that a ring is -semicommutative if and only if is -semicommutative if and only if is -semicommutative. Also, if is -semicommutative, then is -semicommutative. The converse holds provided that is nilpotent and is power serieswise Armendariz. For each positive integer , is -semicommutative if and...
Abhyankar proved that every field of finite transcendence degree over or over a finite field is a homomorphic image of a subring of the ring of polynomials (for some depending on the field). We conjecture that his result cannot be substantially strengthened and show that our conjecture implies a well-known conjecture on the additive idempotence of semifields that are finitely generated as semirings.
We give an elementary and self-contained proof of the theorem which says that for a semiprime ring commutativity, Lie-nilpotency, and nilpotency of the Lie ring of inner derivations are equivalent conditions
Recently, we have shown that a semiring is completely regular if and only if is a union of skew-rings. In this paper we show that a semiring satisfying can be embedded in a completely regular semiring if and only if is additive separative.
A ring or an idempotent semiring is associative provided that additive endomorphisms are multiplicative.