Commutativity of rings with constraints involving a subset
Suppose that is an associative ring with identity , the Jacobson radical of , and the set of nilpotent elements of . Let be a fixed positive integer and an -torsion-free ring with identity . The main result of the present paper asserts that is commutative if satisfies both the conditions (i) for all and (ii) , for all . This result is also valid if (i) and (ii) are replaced by (i)