Gorenstein injective and projective modules.
We give a survey of our recent results on homological properties of Köthe algebras, with an emphasis on biprojectivity, biflatness, and homological dimension. Some new results on the approximate contractibility of Köthe algebras are also presented.
In this paper the problem of construction of the canonical matrix belonging to symplectic forms on a module over the so called plural algebra (introduced in [5]) is solved.
We study whether the projective and injective properties of left -modules can be implied to the special kind of left -modules, especially to the case of inverse polynomial modules and Laurent polynomial modules.
The present work gives some characterizations of -modules with the direct summand sum property (in short DSSP), that is of those -modules for which the sum of any two direct summands, so the submodule generated by their union, is a direct summand, too. General results and results concerning certain classes of -modules (injective or projective) with this property, over several rings, are presented.
In this paper, we study the existence of the -flat preenvelope and the -FP-injective cover. We also characterize -coherent rings in terms of the -FP-injective and -flat modules.
Let be a graded ring and be an integer. We introduce and study the notions of Gorenstein -FP-gr-injective and Gorenstein -gr-flat modules by using the notion of special finitely presented graded modules. On -gr-coherent rings, we investigate the relationships between Gorenstein -FP-gr-injective and Gorenstein -gr-flat modules. Among other results, we prove that any graded module in -gr (or gr-) admits a Gorenstein -FP-gr-injective (or Gorenstein -gr-flat) cover and preenvelope, respectively....
We prove a stronger form, , of a consistency result, , due to Eklof and Shelah. concerns extension properties of modules over non-left perfect rings. We also show (in ZFC) that does not hold for left perfect rings.