Displaying 401 – 420 of 1161

Showing per page

Modules.

Cockett, J. R. B., Koslowski, J., Seely, R. A. G., Wood, R. J. (2003)

Theory and Applications of Categories [electronic only]

Modules commuting (via Hom) with some colimits

Robert El Bashir, Tomáš Kepka, Petr Němec (2003)

Czechoslovak Mathematical Journal

For every module M we have a natural monomorphism Ψ : i I H o m R ( M , A i ) H o m R M , i I A i and we focus our attention on the case when Ψ is also an epimorphism. Some other colimits are also considered.

Modules commuting (via Hom) with some limits

Robert El Bashir, Tomáš Kepka (1998)

Fundamenta Mathematicae

For every module M we have a natural monomorphism   Φ : i I H o m R ( A i , M ) H o m R ( i I A i , M ) and we focus attention on the case when Φ is also an epimorphism. The corresponding modules M depend on thickness of the cardinal number card(I). Some other limits are also considered.

Modules continus

Jacques Bichot (1971)

Publications du Département de mathématiques (Lyon)

Modules tertiaires

Dimitri Latsis (1976/1977)

Groupe d'étude d'algèbre Groupe d'étude d'algèbre

Modules which are invariant under idempotents of their envelopes

Le Van Thuyet, Phan Dan, Truong Cong Quynh (2016)

Colloquium Mathematicae

We study the class of modules which are invariant under idempotents of their envelopes. We say that a module M is -idempotent-invariant if there exists an -envelope u : M → X such that for any idempotent g ∈ End(X) there exists an endomorphism f : M → M such that uf = gu. The properties of this class of modules are discussed. We prove that M is -idempotent-invariant if and only if for every decomposition X = i I X i , we have M = i I ( u - 1 ( X i ) M ) . Moreover, some generalizations of -idempotent-invariant modules are considered....

Currently displaying 401 – 420 of 1161