Ringepimorphismen und Morita-projektive Moduln über kommutativen Dedekind-Ringen.
The aim of this paper is to consider the ringswhich can be graded by completely simple semigroups. We show that each G-graded ring has an orthonormal basis, where G is a completely simple semigroup. We prove that if I is a complete homogeneous ideal of a G-graded ring R, then R/I is a G-graded ring.We deduce a characterization of the maximal ideals of a G-graded ring which are homogeneous. We also prove that if R is a Noetherian graded ring, then each summand of it is also a Noetherian module..
A module M is called finendo (cofinendo) if M is finitely generated (respectively, finitely cogenerated) over its endomorphism ring. It is proved that if R is any hereditary ring, then the following conditions are equivalent: (a) Every right R-module is finendo; (b) Every left R-module is cofinendo; (c) R is left pure semisimple and every finitely generated indecomposable left R-module is cofinendo; (d) R is left pure semisimple and every finitely generated indecomposable left R-module is finendo;...
A ring R is a right max ring if every right module M ≠ 0 has at least one maximal submodule. It suffices to check for maximal submodules of a single module and its submodules in order to test for a max ring; namely, any cogenerating module E of mod-R; also it suffices to check the submodules of the injective hull E(V) of each simple module V (Theorem 1). Another test is transfinite nilpotence of the radical of E in the sense that radα E = 0; equivalently, there is an ordinal α such that radα(E(V))...
A right -module is called -projective provided that it is projective relative to the right -module . This paper deals with the rings whose all nonsingular right modules are -projective. For a right nonsingular ring , we prove that is of finite Goldie rank and all nonsingular right -modules are -projective if and only if is right finitely - and flat right -modules are -projective. Then, -projectivity of the class of nonsingular injective right modules is also considered. Over right...
Zelmanowitz [12] introduced the concept of ring, which we call right zip rings, with the defining properties below, which are equivalent:(ZIP 1) If the right anihilator X⊥ of a subset X of R is zero, then X1⊥ = 0 for a finite subset X1 ⊆ X.(ZIP 2) If L is a left ideal and if L⊥ = 0, then L1⊥ = 0 for a finitely generated left ideal L1 ⊆ L.In [12], Zelmanowitz noted that any ring R satisfying the d.c.c. on anihilator right ideals (= dcc ⊥) is a right zip ring, and hence, so is any subring of R. He...
We discuss the roots of the Nakayama and Auslander-Reiten translations in the derived category of coherent sheaves over a weighted projective line. As an application we derive some new results on the structure of selfinjective algebras of canonical type.