Prime ideals and strongly prime ideals of skew Laurent polynomial rings.
Let0 → ∏ℵI Mα ⎯λ→ ∏I Mα ⎯γ→ Coker λ → 0 be an exact sequence of modules, in which ℵ is an infinite cardinal, λ the natural injection and γ the natural surjection. In this paper, the conditions are given mainly in the four theorems so that λ (γ respectively) is split or locally split. Consequently, some known results are generalized. In particular, Theorem 1 of [7] and Theorem 1.6 of [5] are improved.
Module is said to be small if it is not a union of strictly increasing infinite countable chain of submodules. We show that the class of all small modules over self-injective purely infinite ring is closed under direct products whenever there exists no strongly inaccessible cardinal.