Displaying 61 – 80 of 122

Showing per page

A subclass of strongly clean rings

Orhan Gurgun, Sait Halicioglu and Burcu Ungor (2015)

Communications in Mathematics

In this paper, we introduce a subclass of strongly clean rings. Let R be a ring with identity, J be the Jacobson radical of R , and let J # denote the set of all elements of R which are nilpotent in R / J . An element a R is called very J # -clean provided that there exists an idempotent e R such that a e = e a and a - e or a + e is an element of J # . A ring R is said to be very J # -clean in case every element in R is very J # -clean. We prove that every very J # -clean ring is strongly π -rad clean and has stable range one. It is shown...

A Survey of Rings Generated by Units

Ashish K. Srivastava (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

This article presents a brief survey of the work done on rings generated by their units.

Abelian group pairs having a trivial coGalois group

Paul Hill (2008)

Czechoslovak Mathematical Journal

Torsion-free covers are considered for objects in the category q 2 . Objects in the category q 2 are just maps in R -Mod. For R = , we find necessary and sufficient conditions for the coGalois group G ( A B ) , associated to a torsion-free cover, to be trivial for an object A B in q 2 . Our results generalize those of E. Enochs and J. Rado for abelian groups.

Actions of parabolic subgroups in GL_n on unipotent normal subgroups and quasi-hereditary algebras

Thomas Brüstle, Lutz Hille (2000)

Colloquium Mathematicae

Let R be a parabolic subgroup in G L n . It acts on its unipotent radical R u and on any unipotent normal subgroup U via conjugation. Let Λ be the path algebra k t of a directed Dynkin quiver of type with t vertices and B a subbimodule of the radical of Λ viewed as a Λ-bimodule. Each parabolic subgroup R is the group of automorphisms of an algebra Λ(d), which is Morita equivalent to Λ. The action of R on U can be described using matrices over the bimodule B. The advantage of this description is that each...

Add ( U ) of a uniserial module

Pavel Příhoda (2006)

Commentationes Mathematicae Universitatis Carolinae

A module is called uniserial if it has totally ordered submodules in inclusion. We describe direct summands of U ( I ) for a uniserial module U . It appears that any such a summand is isomorphic to a direct sum of copies of at most two uniserial modules.

Addendum to Zip rings.

Carl Faith (1992)

Publicacions Matemàtiques

We list some typos and minor correction that in no way affect the main results of Rings with zero intersection property on annihilators: Zip rings (Publicacions Matemàtiques 33, 2 (1989), pp. 329-338), e.g., nothing stated in the abstract is affected.

Currently displaying 61 – 80 of 122