Displaying 81 – 100 of 133

Showing per page

One-sided Gorenstein subcategories

Weiling Song, Tiwei Zhao, Zhaoyong Huang (2020)

Czechoslovak Mathematical Journal

We introduce the right (left) Gorenstein subcategory relative to an additive subcategory 𝒞 of an abelian category 𝒜 , and prove that the right Gorenstein subcategory r 𝒢 ( 𝒞 ) is closed under extensions, kernels of epimorphisms, direct summands and finite direct sums. When 𝒞 is self-orthogonal, we give a characterization for objects in r 𝒢 ( 𝒞 ) , and prove that any object in 𝒜 with finite r 𝒢 ( 𝒞 ) -projective dimension is isomorphic to a kernel (or a cokernel) of a morphism from an object in 𝒜 with finite 𝒞 -projective dimension...

QF-3 rings.

Claus Michael Ringel, H. Tachikawa (1975)

Journal für die reine und angewandte Mathematik

Real representations of quivers

Lidia Hügeli, Sverre Smalø (1999)

Colloquium Mathematicae

The Dynkin and the extended Dynkin graphs are characterized by representations over the real numbers.

Relative theory in subcategories

Soud Khalifa Mohamed (2009)

Colloquium Mathematicae

We generalize the relative (co)tilting theory of Auslander-Solberg in the category mod Λ of finitely generated left modules over an artin algebra Λ to certain subcategories of mod Λ. We then use the theory (relative (co)tilting theory in subcategories) to generalize one of the main result of Marcos et al. [Comm. Algebra 33 (2005)].

Relative weak derived functors

Panneerselvam Prabakaran (2020)

Commentationes Mathematicae Universitatis Carolinae

Let R be a ring, n a fixed non-negative integer, 𝒲 the class of all left R -modules with weak injective dimension at most n , and 𝒲 the class of all right R -modules with weak flat dimension at most n . Using left (right) 𝒲 -resolutions and the left derived functors of Hom we study the weak injective dimensions of modules and rings. Also we prove that - - is right balanced on R × R by 𝒲 × 𝒲 , and investigate the global right 𝒲 -dimension of R by right derived functors of .

Semisimplicity and global dimension of a finite von Neumann algebra

Lia Vaš (2007)

Mathematica Bohemica

We prove that a finite von Neumann algebra 𝒜 is semisimple if the algebra of affiliated operators 𝒰 of 𝒜 is semisimple. When 𝒜 is not semisimple, we give the upper and lower bounds for the global dimensions of 𝒜 and 𝒰 . This last result requires the use of the Continuum Hypothesis.

Squared cycles in monomial relations algebras

Brian Jue (2006)

Open Mathematics

Let 𝕂 be an algebraically closed field. Consider a finite dimensional monomial relations algebra Λ = 𝕂 Γ 𝕂 Γ I I of finite global dimension, where Γ is a quiver and I an admissible ideal generated by a set of paths from the path algebra 𝕂 Γ . There are many modules over Λ which may be represented graphically by a tree with respect to a top element, of which the indecomposable projectives are the most natural example. These trees possess branches which correspond to right subpaths of cycles in the quiver. A pattern...

Currently displaying 81 – 100 of 133