Page 1 Next

Displaying 1 – 20 of 99

Showing per page

Odd H-depth and H-separable extensions

Lars Kadison (2012)

Open Mathematics

Let C n(A,B) be the relative Hochschild bar resolution groups of a subring B ⊆ A. The subring pair has right depth 2n if C n+1(A,B) is isomorphic to a direct summand of a multiple of C n(A,B) as A-B-bimodules; depth 2n + 1 if the same condition holds only as B-B-bimodules. It is then natural to ask what is defined if this same condition should hold as A-A-bimodules, the so-called H-depth 2n − 1 condition. In particular, the H-depth 1 condition coincides with A being an H-separable extension of B....

On a family of vector space categories

Grzegorz Bobiński, Andrzej Skowroński (2003)

Open Mathematics

In continuation of our earlier work [2] we describe the indecomposable representations and the Auslander-Reiten quivers of a family of vector space categories playing an important role in the study of domestic finite dimensional algebras over an algebraically closed field. The main results of the paper are applied in our paper [3] where we exhibit a wide class of almost sincere domestic simply connected algebras of arbitrary large finite global dimensions and describe their Auslander-Reiten quivers....

On a separation of orbits in the module variety for domestic canonical algebras

Piotr Dowbor, Andrzej Mróz (2008)

Colloquium Mathematicae

Given a pair M,M' of finite-dimensional modules over a domestic canonical algebra Λ, we give a fully verifiable criterion, in terms of a finite set of simple linear algebra invariants, deciding if M and M' lie in the same orbit in the module variety, or equivalently, if M and M' are isomorphic.

On additive functions for stable translation quivers

Grzegorz Bobiński (1999)

Colloquium Mathematicae

The aim of this note is to give a complete description of the positive additive functions for the stable nonperiodic translation quivers with finitely many orbits. In particular, we show that all positive additive functions on the stable translation quivers of Euclidean type (respectively, of wild type) are periodic, and hence bounded (respectively, are unbounded, and hence nonperiodic).

On artin algebras with almost all indecomposable modules of projective or injective dimension at most one

Andrzej Skowroński (2003)

Open Mathematics

Let A be an artin algebra over a commutative artin ring R and ind A the category of indecomposable finitely generated right A-modules. Denote A to be the full subcategory of ind A formed by the modules X whose all predecessors in ind A have projective dimension at most one, and by A the full subcategory of ind A formed by the modules X whose all successors in ind A have injective dimension at most one. Recently, two classes of artin algebras A with A A co-finite in ind A, quasi-tilted algebras and...

On Auslander–Reiten components for quasitilted algebras

Flávio Coelho, Andrzej Skowroński (1996)

Fundamenta Mathematicae

An artin algebra A over a commutative artin ring R is called quasitilted if gl.dim A ≤ 2 and for each indecomposable finitely generated A-module M we have pd M ≤ 1 or id M ≤ 1. In [11] several characterizations of quasitilted algebras were proven. We investigate the structure and homological properties of connected components in the Auslander-Reiten quiver Γ A of a quasitilted algebra A.

On Auslander-Reiten translates in functorially finite subcategories and applications

K. Erdmann, D. Madsen, V. Miemietz (2010)

Colloquium Mathematicae

We consider functorially finite subcategories in module categories over Artin algebras. One main result provides a method, in the setup of bounded derived categories, to compute approximations and the end terms of relative Auslander-Reiten sequences. We also prove an Auslander-Reiten formula for the setting of functorially finite subcategories. Furthermore, we study the category of modules filtered by standard modules for certain quasi-hereditary algebras and we classify precisely when this category...

On Cohen-Macaulay modules over non-commutative surface singularities

Yuriy Drozd, Volodymyr Gavran (2014)

Open Mathematics

We generalize the results of Kahn about a correspondence between Cohen-Macaulay modules and vector bundles to non-commutative surface singularities. As an application, we give examples of non-commutative surface singularities which are not Cohen-Macaulay finite, but are Cohen-Macaulay tame.

On cyclic vertices in valued translation quivers

Piotr Malicki (2006)

Colloquium Mathematicae

Let x and y be two vertices lying on an oriented cycle in a connected valued translation quiver (Γ,τ,δ). We prove that, under certain conditions, x and y belong to the same cyclic component of (Γ,τ,δ) if and only if there is an oriented cycle in (Γ,τ,δ) passing through x and y.

On derived equivalence classification of gentle two-cycle algebras

Grzegorz Bobiński, Piotr Malicki (2008)

Colloquium Mathematicae

We classify, up to derived (equivalently, tilting-cotilting) equivalence, all nondegenerate gentle two-cycle algebras. We also give a partial classification and formulate a conjecture in the degenerate case.

On domestic algebras of semiregular type

Alicja Jaworska-Pastuszak, Andrzej Skowroński (2013)

Colloquium Mathematicae

We describe the structure of finite-dimensional algebras of domestic representation type over an algebraically closed field whose Auslander-Reiten quiver consists of generalized standard and semiregular components. Moreover, we prove that this class of algebras contains all special biserial algebras whose Auslander-Reiten quiver consists of semiregular components.

On fuzzification of the notion of quantaloid

Sergey A. Solovyov (2010)

Kybernetika

The paper considers a fuzzification of the notion of quantaloid of K. I. Rosenthal, which replaces enrichment in the category of -semilattices with that in the category of modules over a given unital commutative quantale. The resulting structures are called quantale algebroids. We show that their constitute a monadic category and prove a representation theorem for them using the notion of nucleus adjusted for our needs. We also characterize the lattice of nuclei on a free quantale algebroid. At...

Currently displaying 1 – 20 of 99

Page 1 Next