A class of rings which are algebraic over the integers.
The purpose of this paper is to prove the following result: Let be a -torsion free semiprime ring and let be an additive mapping, such that holds for all . In this case is left and right centralizer.
Let be a prime ring of characteristic different from , the Utumi quotient ring of , the extended centroid of , a non-central Lie ideal of , a non-zero generalized derivation of . Suppose that for all , then one of the following holds: (1) there exists such that for all ; (2) satisfies the standard identity and there exist and such that for all . We also extend the result to the one-sided case. Finally, as an application we obtain some range inclusion results of...
Let be a prime ring of characteristic different from 2 and 3, its right Martindale quotient ring, its extended centroid, a non-central Lie ideal of and a fixed positive integer. Let be an automorphism of the ring . An additive map is called an -derivation (or a skew derivation) on if for all . An additive mapping is called a generalized -derivation (or a generalized skew derivation) on if there exists a skew derivation on such that for all . We prove that, if ...
Let be a prime ring of characteristic different from 2, its right Martindale quotient ring and its extended centroid. Suppose that , are generalized skew derivations of with the same associated automorphism , and is a non-central polynomial over such that for all . Then there exists such that for all .