On embedding of involution rings.
Let F be a commutative ring with unit. In this paper, for an associative F-algebra A we study some properties forced by finite length or DCC condition on F-submodules of A that are subalgebras with zero multiplication. Such conditions were considered earlier when F was either a field or the ring of rational integers. In the final section, we consider algebras with maximal commutative subalgebras of finite length as F-modules and obtain some results parallel to those known for ACC condition or finite...
Let be a -torsion free -prime ring, a derivation which commutes with and a -Jordan ideal and a subring of . In this paper, it is shown that if either acts as a homomorphism or as an anti-homomorphism on , then or . Furthermore, an example is given to demonstrate that the -primeness hypothesis is not superfluous.
A well-known theorem due to Kolchin states that a semi-group G of unipotent matrices over a field F can be brought to a triangular form over the field F [4, Theorem H]. Recall that a matrix A is called unipotent if its only eigenvalue is 1, or, equivalently, if the matrix I - A is nilpotent.Many years ago I noticed that this result of Kolchin is an immediate consequence of a too-little known result due to Wedderburn [6]. This result of Wedderburn asserts that if B is a finite dimensional algebra...
Let be a -torsion free prime ring. Suppose that are automorphisms of . In the present paper it is established that if admits a nonzero Jordan left -derivation, then is commutative. Further, as an application of this resul it is shown that every Jordan left -derivation on is a left -derivation on . Finally, in case of an arbitrary prime ring it is proved that if admits a left -derivation which acts also as a homomorphism (resp. anti-homomorphism) on a nonzero ideal of , then ...
Let be a 2-torsion free prime ring and let be a Lie ideal of such that for all . In the present paper it is shown that if is an additive mappings of into itself satisfying for all , then for all .
A ring R is said to be left p-injective if, for any principal left ideal I of R, any left R-homomorphism I into R extends to one of R into itself. In this note left nonsingular left p-injective rings are characterized using their maximal left rings of quotients and the structure of semiprime left p-injective rings of bounded index is investigated.
A new characteristic property of von Neumann regular rings is proposed in terms of annihilators of elements. An ELT fully idempotent ring is a regular ring whose simple left (or right) modules are either injective or projective. Artinian rings are characterized in terms of Noetherian rings. Strongly regular rings and rings whose two-sided ideals are generated by central idempotents are characterized in terms of special annihilators. Quasi-Frobeniusean rings are characterized in terms of -injectivity....