Displaying 21 – 40 of 86

Showing per page

On filial rings

Andrusziewicz, R., Puczylowski, E.R. (1988)

Portugaliae mathematica

On finiteness conditions for subalgebras with zero multiplication

Jan Krempa (2005)

Colloquium Mathematicae

Let F be a commutative ring with unit. In this paper, for an associative F-algebra A we study some properties forced by finite length or DCC condition on F-submodules of A that are subalgebras with zero multiplication. Such conditions were considered earlier when F was either a field or the ring of rational integers. In the final section, we consider algebras with maximal commutative subalgebras of finite length as F-modules and obtain some results parallel to those known for ACC condition or finite...

On Jordan ideals and derivations in rings with involution

Lahcen Oukhtite (2010)

Commentationes Mathematicae Universitatis Carolinae

Let R be a 2 -torsion free * -prime ring, d a derivation which commutes with * and J a * -Jordan ideal and a subring of R . In this paper, it is shown that if either d acts as a homomorphism or as an anti-homomorphism on J , then d = 0 or J Z ( R ) . Furthermore, an example is given to demonstrate that the * -primeness hypothesis is not superfluous.

On Kolchin's theorem.

Israel N. Herstein (1986)

Revista Matemática Iberoamericana

A well-known theorem due to Kolchin states that a semi-group G of unipotent matrices over a field F can be brought to a triangular form over the field F [4, Theorem H]. Recall that a matrix A is called unipotent if its only eigenvalue is 1, or, equivalently, if the matrix I - A is nilpotent.Many years ago I noticed that this result of Kolchin is an immediate consequence of a too-little known result due to Wedderburn [6]. This result of Wedderburn asserts that if B is a finite dimensional algebra...

On left ( θ , ϕ ) -derivations of prime rings

Mohammad Ashraf (2005)

Archivum Mathematicum

Let R be a 2 -torsion free prime ring. Suppose that θ , φ are automorphisms of R . In the present paper it is established that if R admits a nonzero Jordan left ( θ , θ ) -derivation, then R is commutative. Further, as an application of this resul it is shown that every Jordan left ( θ , θ ) -derivation on R is a left ( θ , θ ) -derivation on R . Finally, in case of an arbitrary prime ring it is proved that if R admits a left ( θ , φ ) -derivation which acts also as a homomorphism (resp. anti-homomorphism) on a nonzero ideal of R , then d = 0 ...

On Lie ideals and Jordan left derivations of prime rings

Mohammad Ashraf, Nadeem-ur-Rehman (2000)

Archivum Mathematicum

Let R be a 2-torsion free prime ring and let U be a Lie ideal of R such that u 2 U for all u U . In the present paper it is shown that if d is an additive mappings of R into itself satisfying d ( u 2 ) = 2 u d ( u ) for all u U , then d ( u v ) = u d ( v ) + v d ( u ) for all u , v U .

On non singular p-inyective rings.

Yasuyuki Hirano (1994)

Publicacions Matemàtiques

A ring R is said to be left p-injective if, for any principal left ideal I of R, any left R-homomorphism I into R extends to one of R into itself. In this note left nonsingular left p-injective rings are characterized using their maximal left rings of quotients and the structure of semiprime left p-injective rings of bounded index is investigated.

On p -injectivity, YJ-injectivity and quasi-Frobeniusean rings

Roger Yue Chi Ming (2002)

Commentationes Mathematicae Universitatis Carolinae

A new characteristic property of von Neumann regular rings is proposed in terms of annihilators of elements. An ELT fully idempotent ring is a regular ring whose simple left (or right) modules are either injective or projective. Artinian rings are characterized in terms of Noetherian rings. Strongly regular rings and rings whose two-sided ideals are generated by central idempotents are characterized in terms of special annihilators. Quasi-Frobeniusean rings are characterized in terms of p -injectivity....

On periodic rings.

Du, Xiankun, Yi, Qi (2001)

International Journal of Mathematics and Mathematical Sciences

On radical rings

Christian W. Kroener (1968)

Rendiconti del Seminario Matematico della Università di Padova

Currently displaying 21 – 40 of 86