Relative purity over Noetherian rings
Ladislav Bican (2007)
Mathematica Slovaca
Knut KNORR, Michael SCHNEIDER (1971)
Mathematische Annalen
Guy Maury (1968/1969)
Séminaire Dubreil. Algèbre et théorie des nombres
Gabriella D'Este, Dieter Happel (1990)
Rendiconti del Seminario Matematico della Università di Padova
P. Gabriel, R. Bautista, A.V. Roiter (1985)
Inventiones mathematicae
Andrzej Skowronski, Josef Waschbüsch (1983)
Journal für die reine und angewandte Mathematik
Christine Riedtmann (1983)
Compositio Mathematica
J. C. McConnell (1975)
Annales scientifiques de l'École Normale Supérieure
S.K. Jain, Saroj Jain (1971)
Mathematische Zeitschrift
Armin Thedy (1977)
Mathematische Zeitschrift
Daniel Simson (1984)
Rendiconti del Seminario Matematico della Università di Padova
Gerhard O. Michler (1972)
Mathematische Zeitschrift
Ulrich Albrecht (2010)
Rendiconti del Seminario Matematico della Università di Padova
Artemovych, O.D. (2004)
International Journal of Mathematics and Mathematical Sciences
Claude Cibils (1991)
Mathematische Annalen
Charles Lanski, Attila Maróti (2009)
Open Mathematics
In an Artinian ring R every element of R can be expressed as the sum of two units if and only if R/J(R) does not contain a summand isomorphic to the field with two elements. This result is used to describe those finite rings R for which Γ(R) contains a Hamiltonian cycle where Γ(R) is the (simple) graph defined on the elements of R with an edge between vertices r and s if and only if r - s is invertible. It is also shown that for an Artinian ring R the number of connected components of the graph...
Otto Kerner (1979)
Journal für die reine und angewandte Mathematik
Otto Kerner (1980)
Journal für die reine und angewandte Mathematik
Jan-Erik Björk (1970)
Journal für die reine und angewandte Mathematik
Carl Faith (1995)
Publicacions Matemàtiques
A ring R is a right max ring if every right module M ≠ 0 has at least one maximal submodule. It suffices to check for maximal submodules of a single module and its submodules in order to test for a max ring; namely, any cogenerating module E of mod-R; also it suffices to check the submodules of the injective hull E(V) of each simple module V (Theorem 1). Another test is transfinite nilpotence of the radical of E in the sense that radα E = 0; equivalently, there is an ordinal α such that radα(E(V))...