Extensions of nilpotent blocks.
Frobenius algebras play an important role in the representation theory of finite groups. In the present work, we investigate the (quasi) Frobenius property of n-group algebras. Using the (quasi-) Frobenius property of ring, we can obtain some information about constructions of module category over this ring ([2], p. 66-67).
Suppose is a commutative unital ring and is an abelian group. We give a general criterion only in terms of and when all normalized units in the commutative group ring are -nilpotent. This extends recent results published in [Extracta Math., 2008–2009] and [Ann. Sci. Math. Québec, 2009].
Let be a group algebra, and its quantum double. We first prove that the structure of the Grothendieck ring of can be induced from the Grothendieck ring of centralizers of representatives of conjugate classes of . As a special case, we then give an application to the group algebra , where is a field of characteristic and is a dihedral group of order .
We give a full description of locally finite -groups such that the normalized group of units of the group algebra over a field of characteristic has exponent .
Given a field K of characteristic p > 2 and a finite group G, necessary and sufficient conditions for the unit group U(KG) of the group algebra KG to be centrally metabelian are obtained. It is observed that U(KG) is centrally metabelian if and only if KG is Lie centrally metabelian.