Displaying 41 – 60 of 139

Showing per page

On generalized CS-modules

Qingyi Zeng (2015)

Czechoslovak Mathematical Journal

An 𝒮 -closed submodule of a module M is a submodule N for which M / N is nonsingular. A module M is called a generalized CS-module (or briefly, GCS-module) if any 𝒮 -closed submodule N of M is a direct summand of M . Any homomorphic image of a GCS-module is also a GCS-module. Any direct sum of a singular (uniform) module and a semi-simple module is a GCS-module. All nonsingular right R -modules are projective if and only if all right R -modules are GCS-modules.

On generalized partial twisted smash products

Shuangjian Guo (2014)

Czechoslovak Mathematical Journal

We first introduce the notion of a right generalized partial smash product and explore some properties of such partial smash product, and consider some examples. Furthermore, we introduce the notion of a generalized partial twisted smash product and discuss a necessary condition under which such partial smash product forms a Hopf algebra. Based on these notions and properties, we construct a Morita context for partial coactions of a co-Frobenius Hopf algebra.

On indecomposable projective representations of finite groups over fields of characteristic p > 0

Leonid F. Barannyk, Kamila Sobolewska (2003)

Colloquium Mathematicae

Let G be a finite group, F a field of characteristic p with p||G|, and F λ G the twisted group algebra of the group G and the field F with a 2-cocycle λ ∈ Z²(G,F*). We give necessary and sufficient conditions for F λ G to be of finite representation type. We also introduce the concept of projective F-representation type for the group G (finite, infinite, mixed) and we exhibit finite groups of each type.

On Lie algebras in braided categories

Bodo Pareigis (1997)

Banach Center Publications

The category of group-graded modules over an abelian group G is a monoidal category. For any bicharacter of G this category becomes a braided monoidal category. We define the notion of a Lie algebra in this category generalizing the concepts of Lie super and Lie color algebras. Our Lie algebras have n -ary multiplications between various graded components. They possess universal enveloping algebras that are Hopf algebras in the given category. Their biproducts with the group ring are noncommutative...

On lifting of idempotents and semiregular endomorphism rings

Tsiu-Kwen Lee, Yiqiang Zhou (2011)

Colloquium Mathematicae

Starting with some observations on (strong) lifting of idempotents, we characterize a module whose endomorphism ring is semiregular with respect to the ideal of endomorphisms with small image. This is the dual of Yamagata's work [Colloq. Math. 113 (2008)] on a module whose endomorphism ring is semiregular with respect to the ideal of endomorphisms with large kernel.

On local weak crossed product orders

Th. Theohari-Apostolidi, A. Tompoulidou (2014)

Colloquium Mathematicae

Let Λ = (S/R,α) be a local weak crossed product order in the crossed product algebra A = (L/K,α) with integral cocycle, and H = σ G a l ( L / K ) | α ( σ , σ - 1 ) S * the inertial group of α, for S* the group of units of S. We give a condition for the first ramification group of L/K to be a subgroup of H. Moreover we describe the Jacobson radical of Λ without restriction on the ramification of L/K.

On McCoy condition and semicommutative rings

Mohamed Louzari (2013)

Commentationes Mathematicae Universitatis Carolinae

Let R be a ring and σ an endomorphism of R . We give a generalization of McCoy’s Theorem [ Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28–29] to the setting of skew polynomial rings of the form R [ x ; σ ] . As a consequence, we will show some results on semicommutative and σ -skew McCoy rings. Also, several relations among McCoyness, Nagata extensions and Armendariz rings and modules are studied.

Currently displaying 41 – 60 of 139