The group of automorphisms of the coordinate ring of quantum symplectic space.
This paper studies the Hochschild cohomology of finite-dimensional monomial algebras. If Λ = K/I with I an admissible monomial ideal, then we give sufficient conditions for the existence of an embedding of into the Hochschild cohomology ring HH*(Λ). We also introduce stacked algebras, a new class of monomial algebras which includes Koszul and D-Koszul monomial algebras. If Λ is a stacked algebra, we prove that , where is the ideal in HH*(Λ) generated by the homogeneous nilpotent elements. In...
We describe the images of multilinear polynomials of arbitrary degree evaluated on the upper triangular matrix algebra over an infinite field.
The rational completion of an -module can be characterized as a -injective hull of with respect to a (hereditary) torsion functor depending on . Properties of a torsion functor depending on an -module are studied.
We give a new proof of the main result of [1] which does not use the classification of the finite simple groups.