Displaying 121 – 140 of 382

Showing per page

First order calculi with values in right-universal bimodules

Andrzej Borowiec, Vladislav Kharchenko, Zbigniew Oziewicz (1997)

Banach Center Publications

The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.

G -nilpotent units of commutative group rings

Peter Vassilev Danchev (2012)

Commentationes Mathematicae Universitatis Carolinae

Suppose R is a commutative unital ring and G is an abelian group. We give a general criterion only in terms of R and G when all normalized units in the commutative group ring R G are G -nilpotent. This extends recent results published in [Extracta Math., 2008–2009] and [Ann. Sci. Math. Québec, 2009].

Generalized derivations on Lie ideals in prime rings

Basudeb Dhara, Sukhendu Kar, Sachhidananda Mondal (2015)

Czechoslovak Mathematical Journal

Let R be a prime ring with its Utumi ring of quotients U and extended centroid C . Suppose that F is a generalized derivation of R and L is a noncentral Lie ideal of R such that F ( u ) [ F ( u ) , u ] n = 0 for all u L , where n 1 is a fixed integer. Then one of the following holds: ...

Group algebras with centrally metabelian unit groups.

Meena Sahai (1996)

Publicacions Matemàtiques

Given a field K of characteristic p > 2 and a finite group G, necessary and sufficient conditions for the unit group U(KG) of the group algebra KG to be centrally metabelian are obtained. It is observed that U(KG) is centrally metabelian if and only if KG is Lie centrally metabelian.

Group rings with FC-nilpotent unit groups.

Vikas Bist (1991)

Publicacions Matemàtiques

Let U(RG) be the unit group of the group ring RG. Groups G such that U(RG) is FC-nilpotent are determined, where R is the ring of integers Z or a field K of characteristic zero.

Currently displaying 121 – 140 of 382