Displaying 181 – 200 of 825

Showing per page

Ext-algebras and derived equivalences

Dag Madsen (2006)

Colloquium Mathematicae

Using derived categories, we develop an alternative approach to defining Koszulness for positively graded algebras where the degree zero part is not necessarily semisimple.

f -derivations on rings and modules

Paul E. Bland (2006)

Commentationes Mathematicae Universitatis Carolinae

If τ is a hereditary torsion theory on 𝐌𝐨𝐝 R and Q τ : 𝐌𝐨𝐝 R 𝐌𝐨𝐝 R is the localization functor, then we show that every f -derivation d : M N has a unique extension to an f τ -derivation d τ : Q τ ( M ) Q τ ( N ) when τ is a differential torsion theory on 𝐌𝐨𝐝 R . Dually, it is shown that if τ is cohereditary and C τ : 𝐌𝐨𝐝 R 𝐌𝐨𝐝 R is the colocalization functor, then every f -derivation d : M N can be lifted uniquely to an f τ -derivation d τ : C τ ( M ) C τ ( N ) .

Faithfully quadratic rings - a summary of results

M. Dickmann, F. Miraglia (2016)

Banach Center Publications

This is a summary of some of the main results in the monograph Faithfully Ordered Rings (Mem. Amer. Math. Soc. 2015), presented by the first author at the ALANT conference, Będlewo, Poland, June 8-13, 2014. The notions involved and the results are stated in detail, the techniques employed briefly outlined, but proofs are omitted. We focus on those aspects of the cited monograph concerning (diagonal) quadratic forms over preordered rings.

Finite automata and algebraic extensions of function fields

Kiran S. Kedlaya (2006)

Journal de Théorie des Nombres de Bordeaux

We give an automata-theoretic description of the algebraic closure of the rational function field 𝔽 q ( t ) over a finite field 𝔽 q , generalizing a result of Christol. The description occurs within the Hahn-Mal’cev-Neumann field of “generalized power series” over 𝔽 q . In passing, we obtain a characterization of well-ordered sets of rational numbers whose base p expansions are generated by a finite automaton, and exhibit some techniques for computing in the algebraic closure; these include an adaptation to positive...

First order calculi with values in right-universal bimodules

Andrzej Borowiec, Vladislav Kharchenko, Zbigniew Oziewicz (1997)

Banach Center Publications

The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.

Free actions on semiprime rings

Muhammad Anwar Chaudhry, Mohammad S. Samman (2008)

Mathematica Bohemica

We identify some situations where mappings related to left centralizers, derivations and generalized ( α , β ) -derivations are free actions on semiprime rings. We show that for a left centralizer, or a derivation T , of a semiprime ring R the mapping ψ R R defined by ψ ( x ) = T ( x ) x - x T ( x ) for all x R is a free action. We also show that for a generalized ( α , β ) -derivation F of a semiprime ring R , with associated ( α , β ) -derivation d , a dependent element a of F is also a dependent element of α + d . Furthermore, we prove that for a centralizer f and...

Free associative algebras, noncommutative Gröbner bases, and universal associative envelopes for nonassociative structures

Murray R. Bremner (2014)

Commentationes Mathematicae Universitatis Carolinae

First, we provide an introduction to the theory and algorithms for noncommutative Gröbner bases for ideals in free associative algebras. Second, we explain how to construct universal associative envelopes for nonassociative structures defined by multilinear operations. Third, we extend the work of Elgendy (2012) for nonassociative structures on the 2-dimensional simple associative triple system to the 4- and 6-dimensional systems.

Currently displaying 181 – 200 of 825