Displaying 261 – 280 of 825

Showing per page

Invariants of Unipotent Transformations Acting on Noetherian Relatively Free Algebras

Drensky, Vesselin (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 16R10, 16R30.The classical theorem of Weitzenböck states that the algebra of invariants K[X]^g of a single unipotent transformation g ∈ GLm(K) acting on the polynomial algebra K[X] = K[x1, . . . , xm] over a field K of characteristic 0 is finitely generated.Partially supported by Grant MM-1106/2001 of the Bulgarian National Science Fund.

Involution Matrix Algebras – Identities and Growth

Rashkova, Tsetska (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 16R50, 16R10.The paper is a survey on involutions (anti-automorphisms of order two) of different kinds. Starting with the first systematic investigations on involutions of central simple algebras due to Albert the author emphasizes on their basic properties, the conditions on their existence and their correspondence with structural characteristics of the algebras. Focusing on matrix algebras a complete description of involutions of the first kind on Mn(F)...

Isomorphisms between graded Frobenius algebras constructed from twisted superpotentials

Xuejun Xia, Libin Li (2022)

Czechoslovak Mathematical Journal

In order to distinguish the connected graded Frobenius algebras determined by different twisted superpotentials, we introduce the nondegeneracy of twisted superpotentials. We give the sufficient and necessary condition for connected graded Frobenius algebras determined by two nondegenerate twisted superpotentials to be isomorphic. As an application, we classify the connected -graded Frobenius algebra of length 3, whose dimension of the degree 1 is 2.

Jordan- and Lie geometries

Wolfgang Bertram (2013)

Archivum Mathematicum

In these lecture notes we report on research aiming at understanding the relation beween algebras and geometries, by focusing on the classes of Jordan algebraic and of associative structures and comparing them with Lie structures. The geometric object sought for, called a generalized projective, resp. an associative geometry, can be seen as a combination of the structure of a symmetric space, resp. of a Lie group, with the one of a projective geometry. The text is designed for readers having basic...

Jordan automorphisms of triangular algebras. II

Driss Aiat Hadj Ahmed, Rachid Tribak (2015)

Commentationes Mathematicae Universitatis Carolinae

We give a sufficient condition under which any Jordan automorphism of a triangular algebra is either an automorphism or an anti-automorphism.

Jordan *-derivation pairs on standard operator algebras and related results

Dilian Yang (2005)

Colloquium Mathematicae

Motivated by Problem 2 in [2], Jordan *-derivation pairs and n-Jordan *-mappings are studied. From the results on these mappings, an affirmative answer to Problem 2 in [2] is given when E = F in (1) or when 𝓐 is unital. For the general case, we prove that every Jordan *-derivation pair is automatically real-linear. Furthermore, a characterization of a non-normal prime *-ring under some mild assumptions and a representation theorem for quasi-quadratic functionals are provided.

Jordan ideals and derivations in prime near-rings

Abdelkarim Boua, Lahcen Oukhtite, Abderrahmane Raji (2014)

Commentationes Mathematicae Universitatis Carolinae

In this paper we investigate 3 -prime near-rings with derivations satisfying certain differential identities on Jordan ideals, and we provide examples to show that the assumed restrictions cannot be relaxed.

Currently displaying 261 – 280 of 825