Orthogonal generalized -derivations of semiprime rings.
Commutative rings over which no endomorphism algebra has an outer automorphism are studied.
The main purpose of the present paper is to study representations of BiHom-Hopf algebras. We first introduce the notion of BiHom-Hopf algebras, and then discuss BiHom-type modules, Yetter-Dinfeld modules and Drinfeld doubles with parameters. We get some new -monoidal categories via the category of BiHom-(co)modules and the category of BiHom-Yetter-Drinfeld modules. Finally, we obtain a center construction type theorem on BiHom-Hopf algebras.
We prove that the study of the category C-Comod of left comodules over a K-coalgebra C reduces to the study of K-linear representations of a quiver with relations if K is an algebraically closed field, and to the study of K-linear representations of a K-species with relations if K is a perfect field. Given a field K and a quiver Q = (Q₀,Q₁), we show that any subcoalgebra C of the path K-coalgebra K◻Q containing is the path coalgebra of a profinite bound quiver (Q,), and the category C-Comod...
Let be a prime ring of characteristic different from 2, be its right Martindale quotient ring and be its extended centroid. Suppose that is a non-zero generalized skew derivation of and f(x₁,..., xₙ) is a non-central multilinear polynomial over with n non-commuting variables. If there exists a non-zero element a of such that a[ (f(r₁,..., rₙ)),f(r₁, ..., rₙ)] = 0 for all r₁, ..., rₙ ∈ , then one of the following holds: (a) there exists λ ∈ such that (x) = λx for all x ∈ ; (b) there exist and...
Let n ≥ 3 be a positive integer. We study symmetric skew n-derivations of prime and semiprime rings and prove that under some certain conditions a prime ring with a nonzero symmetric skew n-derivation has to be commutative.