Bigèbres de Lie, doubles et carrés
Binary operations on algebras of observables are studied in the quantum as well as in the classical case. It is shown that certain natural compatibility conditions with the associative product imply properties which are usually additionally required.
Possession of a unique nonidentity commutator/associator is a property which dominates the theory of loops whose loop rings, while not associative, nevertheless satisfy an ``interesting'' identity. Indeed, until now, with the exception of some ad hoc examples, the only known class of Bol loops whose loop rings satisfy the right Bol identity have this property. In this paper, we identify another class of loops whose loop rings are ``strongly right alternative'' and present various constructions of...
We introduce a representation theory of q-Lie algebras defined earlier in [DG1], [DG2], formulated in terms of braided modules. We also discuss other ways to define Lie algebra-like objects related to quantum groups, in particular, those based on the so-called reflection equations. We also investigate the truncated tensor product of braided modules.