Malcev-Moduln.
Let 𝓛 be a subspace lattice on a Banach space X and let δ: Alg𝓛 → B(X) be a linear mapping. If ⋁ {L ∈ 𝓛 : L₋ ⊉ L}= X or ⋁ {L₋ : L ∈ 𝓛, L₋ ⊉ L} = (0), we show that the following three conditions are equivalent: (1) δ(AB) = δ(A)B + Aδ(B) whenever AB = 0; (2) δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A) whenever AB + BA = 0; (3) δ is a generalized derivation and δ(I) ∈ (Alg𝓛)'. If ⋁ {L ∈ 𝓛 : L₋ ⊉ L} = X or ⋁ {L₋ : L ∈ 𝓛, L₋ ⊉ L} = (0) and δ satisfies δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A)...
It is already known that any filiform Lie algebra which possesses a codimension 2 solvable extension is naturally graded. Here we present an alternative derivation of this result.
Generalizing the notion of matched pair of groups, we define and study matched pairs of locally compact groupoids endowed with Haar systems, in order to give new examples of measured quantum groupoids.
We investigate finite Moufang loops with a unique nonidentity commutator which are not associative, but all of whose proper subloops are associative. Curiously, perhaps, such loops turn out to be ``ring alternative'', in the sense that their loop rings are alternative rings.
Critical points of a master function associated to a simple Lie algebra come in families called the populations [11]. We prove that a population is isomorphic to the flag variety of the Langlands dual Lie algebra . The proof is based on the correspondence between critical points and differential operators called the Miura opers. For a Miura oper D, associated with a critical point of a population, we show that all solutions of the differential equation DY=0 can be written explicitly in terms...