Factorisations des monoïdes libres, bascules, et algèbres de Lie libres
In recent papers, the Right and the Strong* topologies have been introduced and studied on general Banach spaces. We characterize different types of continuity for multilinear operators (joint, uniform, etc.) with respect to the above topologies. We also study the relations between them. Finally, in the last section, we relate the joint Strong*-to-norm continuity of a multilinear operator T defined on C*-algebras (respectively, JB*-triples) to C*-summability (respectively, JB*-triple-summability)....
Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in the formal variational calculus. Fermionic Novikov algebras correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we show that fermionic Novikov algebras equipped with invariant non-degenerate symmetric bilinear forms are Novikov algebras.
We investigate the finite-dimensional Lie groups whose points are separated by the continuous homomorphisms into groups of invertible elements of locally convex algebras with continuous inversion that satisfy an appropriate completeness condition. We find that these are precisely the linear Lie groups, that is, the Lie groups which can be faithfully represented as matrix groups. Our method relies on proving that certain finite-dimensional Lie subalgebras of algebras with continuous inversion commute...
Le but de cet article est de formuler une hypothèse permettant d’affirmer que l’homologie d’une super algèbre de Lie à valeurs dans un module de dimension finie est de dimension finie
The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.