S4-symmetry on the Tits construction of exceptional Lie algebras and superalgebras
A subalgebra of a finite dimensional Lie algebra is said to be a -subalgebra if there is a chief series of such that for every , we have or . This is analogous to the concept of -subgroup, which has been studied by a number of authors. In this article, we investigate the connection between the structure of a Lie algebra and its -subalgebras and give some sufficient conditions for a Lie algebra to be solvable or supersolvable.
Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les groupes exceptionnels de type sur un corps local. Nous décrivons chaque construction concrètement en termes de réseaux : l’immeuble, les appartements, la structure simpliciale, les schémas en groupes associés. Les appendices traitent de l’analogie avec les espaces symétriques réels et des espaces symétriques associés à réel et complexe.
Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les groupes exceptionnels des type ou sur un corps local. Nous décrivons chaque construction concrètement en termes de réseaux : l’immeuble, les appartements, la structure simpliciale, les schémas en groupes associés.
We introduce a 1-cocycle on the group of diffeomorphisms Diff(M) of a smooth manifold M endowed with a projective connection. This cocycle represents a nontrivial cohomology class of Diff(M) related to the Diff(M)-modules of second order linear differential operators on M. In the one-dimensional case, this cocycle coincides with the Schwarzian derivative, while, in the multi-dimensional case, it represents its natural and new generalization. This work is a continuation of [3] where the same problems...
The universe we see gives every sign of being composed of matter. This is considered a major unsolved problem in theoretical physics. Using the mathematical modeling based on the algebra , an interpretation is developed that suggests that this seeable universe is not the whole universe; there is an unseeable part of the universe composed of antimatter galaxies and stuff, and an extra 6 dimensions of space (also unseeable) linking the matter side to the antimatter—at the very least.
We give a general definition of branched, self-similar Lie algebras, and show that important examples of Lie algebras fall into that class. We give sufficient conditions for a self-similar Lie algebra to be nil, and prove in this manner that the self-similar algebras associated with Grigorchuk’s and Gupta–Sidki’s torsion groups are nil as well as self-similar.We derive the same results for a class of examples constructed by Petrogradsky, Shestakov and Zelmanov.
Soit une algèbre de Jordan simple euclidienne de dimension finie et le cône symétrique associé. Nous étudions dans cet article le semi-groupe , naturellement associé à , formé des automorphismes holomorphes du domaine tube qui appliquent le cône dans lui-même.
We describe representations of certain superconformal algebras in the semi-infinite Weil complex related to the loop algebra of a complex finite-dimensional Lie algebra and in the semi-infinite cohomology. We show that in the case where the Lie algebra is endowed with a non-degenerate invariant symmetric bilinear form, the relative semi-infinite cohomology of the loop algebra has a structure, which is analogous to the classical structure of the de Rham cohomology in Kähler...
We study a family of commuting selfadjoint operators , which satisfy, together with the operators of the family , semilinear relations , (, , are fixed Borel functions). The developed technique is used to investigate representations of deformations of the universal enveloping algebra U(so(3)), in particular, of some real forms of the Fairlie algebra .
We give an elementary and self-contained proof of the theorem which says that for a semiprime ring commutativity, Lie-nilpotency, and nilpotency of the Lie ring of inner derivations are equivalent conditions