Lie algebras and coverings.
The main result is a Pursell-Shanks type theorem describing isomorphism of the Lie algebras of vector fields preserving generalized foliations. The result includes as well smooth as real-analytic and holomorphic cases.
We give a complete classification of Lie Algebras whose lattice of ideals has the length ≤ 2.
We give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generalizes the Dynkin-Specht-Wever criterion for Lie elements in a free associative algebra.
This paper aims to introduce and explore the concept of Lie perfect multiplicative Lie algebras, with a particular focus on their connections to the central extension theory of multiplicative Lie algebras. The primary objective is to establish and provide proof for a range of results derived from Lie perfect multiplicative Lie algebras. Furthermore, the study extends the notion of Lie nilpotency by introducing and examining the concept of local nilpotency within multiplicative Lie algebras. The...