Displaying 1901 – 1920 of 2676

Showing per page

The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications

Guo-Niu Han (2010)

Annales de l’institut Fourier

The paper is devoted to the derivation of the expansion formula for the powers of the Euler Product in terms of partition hook lengths, discovered by Nekrasov and Okounkov in their study of the Seiberg-Witten Theory. We provide a refinement based on a new property of t -cores, and give an elementary proof by using the Macdonald identities. We also obtain an extension by adding two more parameters, which appears to be a discrete interpolation between the Macdonald identities and the generating function...

The Penrose transform and Clifford analysis

Bureš, J., Souček, V. (1991)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0742.00067.]The Penrose transform is always based on a diagram of homogeneous spaces. Here the case corresponding to the orthogonal group S O ( 2 n , C ) is studied by means of Clifford analysis [see F. Brackx, R. Delanghe and F. Sommen: Clifford analysis (1982; Zbl 0529.30001)], and is presented a simple approach using the Dolbeault realization of the corresponding cohomology groups and a simple calculus with differential forms (the Cauchy integral formula for solutions of...

Currently displaying 1901 – 1920 of 2676