Radicals of semi-group rings
A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.
We use the computational power of rational homotopy theory to provide an explicit cochain model for the loop product and the string bracket of a simply connected closed manifold . We prove that the loop homology of is isomorphic to the Hochschild cohomology of the cochain algebra with coefficients in . Some explicit computations of the loop product and the string bracket are given.
The purpose of these survey notes is to give a presentation of a classical theorem of Nomizu [Nom54] that relates the invariant affine connections on reductive homogeneous spaces and nonassociative algebras.
In this paper, we introduce the definition of restrictable Lie-Rinehart algebras, the concept of restrictability is by far more tractable than that of a restricted Lie-Rinehart algebra. Moreover, we obtain some properties of p-mappings and restrictable Lie-Rinehart algebras. Finally, we give some sufficient conditions for the commutativity of quasi-toral restricted Lie-Rinehart algebras and study how a quasi-toral restricted Lie-Rinehart algebra with zero center and of minimal dimension should be....