Lattice isomorphisms of alternative algebras
The notions of left-right noncommutative Poisson algebra (NPlr-algebra) and left-right algebra with bracket AWBlr are introduced. These algebras are special cases of NLP-algebras and algebras with bracket AWB, respectively, studied earlier. An NPlr-algebra is a noncommutative analogue of the classical Poisson algebra. Properties of these new algebras are studied. In the categories AWBlr and NPlr-algebras the notions of actions, representations, centers, actors and crossed modules are described as...
In this survey article we discuss the origin, theory and applications of left-symmetric algebras (LSAs in short) in geometry in physics. Recently Connes, Kreimer and Kontsevich have introduced LSAs in mathematical physics (QFT and renormalization theory), where the name pre-Lie algebras is used quite often. Already Cayley wrote about such algebras more than hundred years ago. Indeed, LSAs arise in many different areas of mathematics and physics. We attempt to give a survey of the fields where LSAs...
A finite-dimensional Lie algebra is called an -algebra if all of its nilpotent subalgebras are abelian. These arise in the study of constant Yang-Mills potentials and have also been particularly important in relation to the problem of describing residually finite varieties. They have been studied by several authors, including Bakhturin, Dallmer, Drensky, Sheina, Premet, Semenov, Towers and Varea. In this paper we establish generalisations of many of these results to Leibniz algebras.
We propose a definition of Leibniz cohomology, , for differentiable manifolds. Then becomes a non-commutative version of Gelfand-Fuks cohomology. The calculations of reduce to those of formal vector fields, and can be identified with certain invariants of foliations.
We give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generalizes the Dynkin-Specht-Wever criterion for Lie elements in a free associative algebra.
This paper aims to introduce and explore the concept of Lie perfect multiplicative Lie algebras, with a particular focus on their connections to the central extension theory of multiplicative Lie algebras. The primary objective is to establish and provide proof for a range of results derived from Lie perfect multiplicative Lie algebras. Furthermore, the study extends the notion of Lie nilpotency by introducing and examining the concept of local nilpotency within multiplicative Lie algebras. The...
We give a construction for (m,n)-rings of quotients of a semicommutative (m,n)-ring, which generalizes the ones given by Crombez and Timm and by Paunić for the commutative case. We also study various constructions involving reduced rings and rings of quotients and give some functorial interpretations.