The closure diagram for nilpotent orbits of the split real form of E8
Let and be adjoint nilpotent orbits in a real semisimple Lie algebra. Write ≥ if is contained in the closure of . This defines a partial order on the set of such orbits, known as the closure ordering. We determine this order for the split real form of the simple complex Lie algebra, E 8. The proof is based on the fact that the Kostant-Sekiguchi correspondence preserves the closure ordering. We also present a comprehensive list of simple representatives of these orbits, and list the irreeducible...