Gelfand-Kirillor Dimension for non-Associative Algebras
In this paper, we use the graphs as a tool to study nilpotent Lie algebras. It implies to set up a link betwcen graph theory and Lie theory. To do this, it is already known that every nilpotent Lie algebra of maximal rank is associated with a generalized Cartan matrix A and it ils isomorphic to a quotient of the positive part n+ of the KacMoody algebra g(A). Then, if A is affine, we can associate n+ with a directed graph (from now on, we use the term digraph) and we can also associate a subgraph...