Loading [MathJax]/extensions/MathZoom.js
Pour tout groupe de Lie nilpotent réel connexe et simplement connexe, on construit une stratification du dual de l’algèbre de Lie, et on paramètre chaque strate au moyen d’un triplet de fonctions rationnelles à valeurs vectorielles; les valeurs de caractérisent les orbites de la strate et pour chacune de ces orbites, le couple constitue une carte de Darboux.
In this paper we give the description of some non-strongly nilpotent Leibniz algebras. We pay our attention to the subclass of nilpotent Leibniz algebras, which is called filiform. Note that the set of filiform Leibniz algebras of fixed dimension can be decomposed into three disjoint families. We describe the pre-derivations of filiform Leibniz algebras for the first and second families and determine those algebras in the first two classes of filiform Leibniz algebras that are non-strongly nilpotent....
Currently displaying 1 –
3 of
3