Page 1

Displaying 1 – 7 of 7

Showing per page

Semi-infinite cohomology and superconformal algebras

Elena Poletaeva (2001)

Annales de l’institut Fourier

We describe representations of certain superconformal algebras in the semi-infinite Weil complex related to the loop algebra of a complex finite-dimensional Lie algebra and in the semi-infinite cohomology. We show that in the case where the Lie algebra is endowed with a non-degenerate invariant symmetric bilinear form, the relative semi-infinite cohomology of the loop algebra has a structure, which is analogous to the classical structure of the de Rham cohomology in Kähler...

Spectral sequences for commutative Lie algebras

Friedrich Wagemann (2020)

Communications in Mathematics

We construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic 2 . In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain spectral sequences which compare Chevalley-Eilenberg-, commutative- and Leibniz cohomology. These methods are illustrated by a few computations.

Currently displaying 1 – 7 of 7

Page 1