A Class of Non-Standard Modules for Affine Lie Algebras.
To calculate the zeros of a map f : Rn → Rn we consider the class of triangulations of Rn so that a certain point belongs to a simplex of fixed diameter and dimension. In this paper two types of this new class of triangulations are constructed and shown to be useful to calculate zeros of piecewise linear approximations of f.
Lax operator algebras constitute a new class of infinite dimensional Lie algebras of geometric origin. More precisely, they are algebras of matrices whose entries are meromorphic functions on a compact Riemann surface. They generalize classical current algebras and current algebras of Krichever-Novikov type. Lax operators for 𝔤𝔩(n), with the spectral parameter on a Riemann surface, were introduced by Krichever. In joint works of Krichever and Sheinman their algebraic structure was revealed and...