On a diffeological group realization of certain generalized symmetrizable Kac-Moody Lie algebras.
We use categories to recast the combinatorial theory of full heaps, which are certain labelled partially ordered sets that we introduced in previous work. This gives rise to a far simpler set of definitions, which we use to outline a combinatorial construction of the so-called loop algebras associated to affine untwisted Kac--Moody algebras. The finite convex subsets of full heaps are equipped with a statistic called parity, and this naturally gives rise to Kac's asymmetry function. The latter is...