Page 1

Displaying 1 – 4 of 4

Showing per page

On Griess algebras.

Roitman, Michael (2008)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

On the cohomology of vector fields on parallelizable manifolds

Yuly Billig, Karl-Hermann Neeb (2008)

Annales de l’institut Fourier

In the present paper we determine for each parallelizable smooth compact manifold M the second cohomology spaces of the Lie algebra 𝒱 M of smooth vector fields on M with values in the module Ω ¯ M p = Ω M p / d Ω M p - 1 . The case of p = 1 is of particular interest since the gauge algebra of functions on M with values in a finite-dimensional simple Lie algebra has the universal central extension with center Ω ¯ M 1 , generalizing affine Kac-Moody algebras. The second cohomology H 2 ( 𝒱 M , Ω ¯ M 1 ) classifies twists of the semidirect product of 𝒱 M with the...

Currently displaying 1 – 4 of 4

Page 1