Displaying 21 – 40 of 1857

Showing per page

A constructive method to determine the variety of filiform Lie algebras

F. J. Echarte, M. C. Márquez, J. Núñez (2006)

Czechoslovak Mathematical Journal

In this paper we use cohomology of Lie algebras to study the variety of laws associated with filiform Lie algebras of a given dimension. As the main result, we describe a constructive way to find a small set of polynomials which define this variety. It allows to improve previous results related with the cardinal of this set. We have also computed explicitly these polynomials in the case of dimensions 11 and 12.

A family of regular vertex operator algebras with two generators

Dražen Adamović (2007)

Open Mathematics

For every m ∈ ℂ ∖ 0, −2 and every nonnegative integer k we define the vertex operator (super)algebra D m,k having two generators and rank 3 m m + 2 . If m is a positive integer then D m,k can be realized as a subalgebra of a lattice vertex algebra. In this case, we prove that D m,k is a regular vertex operator (super) algebra and find the number of inequivalent irreducible modules.

Currently displaying 21 – 40 of 1857