Relation between invertibility of Casimir operators and semisimplicity of quadratic Lie superalgebras.
A Lie algebra is called a generalized Heisenberg algebra of degree n if its centre coincides with its derived algebra and is n-dimensional. In this paper we define for each positive integer n a generalized Heisenberg algebra 𝓗ₙ. We show that 𝓗ₙ and 𝓗 ₁ⁿ, the Lie algebra which is the direct product of n copies of 𝓗 ₁, contain isomorphic copies of each other. We show that 𝓗ₙ is an indecomposable Lie algebra. We prove that 𝓗ₙ and 𝓗 ₁ⁿ are not quotients of each other when n ≥ 2, but 𝓗 ₁ is a...
Starting by the famous paper by Kirillov, local Lie algebras of functions over smooth manifolds were studied very intensively by mathematicians and physicists. In the present paper we study local Lie algebras of pairs of functions which generate infinitesimal symmetries of almost-cosymplectic-contact structures of odd dimensional manifolds.
In this article, we study the structure of Fock modules over super Virasoro algebras. As an application, we construct Bechi-Rouet–Stora–Tyutin type resolutions for super minimal models and their descendants.
On donne une condition nécessaire et suffisante pour l’existence de modules de dimension finie sur l’algèbre de Cherednik rationnelle associée à un système de racines.