A generalized global differential calculus : application to invariance under a Lie group. I
This paper presents a generalized minimal realization theory of machines in a category which contains the Kleiski case. The minimal realization is the cheapest realization for a given cost functor. The final reachable realization of Arbib and Manes ([5]) and the minimal state approach for nondeterministic machines are included here.
A logic of orthogonality characterizes all “orthogonality consequences" of a given class of morphisms, i.e. those morphisms such that every object orthogonal to is also orthogonal to . A simple four-rule deduction system is formulated which is sound in every cocomplete category. In locally presentable categories we prove that the deduction system is also complete (a) for all classes of morphisms such that all members except a set are regular epimorphisms and (b) for all classes , without...
Let be a monoidal Hom-Hopf algebra and a right -Hom-comodule algebra. We first introduce the notion of a relative Hom-Hopf module and prove that the functor from the category of relative Hom-Hopf modules to the category of right -Hom-modules has a right adjoint. Furthermore, we prove a Maschke type theorem for the category of relative Hom-Hopf modules. In fact, we give necessary and sufficient conditions for the functor that forgets the -coaction to be separable. This leads to a generalized...