Page 1 Next

Displaying 1 – 20 of 158

Showing per page

𝒯 0 - and 𝒯 1 -reflections

Maria Manuel Clementino (1992)

Commentationes Mathematicae Universitatis Carolinae

In an abstract category with suitable notions of subobject, closure and point, we discuss the separation axioms T 0 and T 1 . Each of the arising subcategories is reflective. We give an iterative construction of the reflectors and present characteristic examples.

𝒟 -modules et faisceaux pervers dont le support singulier est un croisement normal

André Galligo, Michel Granger, Philippe Maisonobe (1985)

Annales de l'institut Fourier

Dans cet article on étudie les 𝒟 -modules dont le support singulier est un croisement normal dans C n , par l’intermédiaire de la catégorie équivalente de faisceaux pervers. On montre qu’ils sont caractérisés, à isomorphisme près, par la donnée suivante : un hypercube constitué par des espaces vectoriels de dimension finie F I indexés par les parties de { 1 , ... , n } , et des applications linéaires F I F I { i } soumises à certaines conditions de commutativité et d’inversibilité. Ce résultat est exprimé sous forme d’une équivalence...

( n , d ) -injective covers, n -coherent rings, and ( n , d ) -rings

Weiqing Li, Baiyu Ouyang (2014)

Czechoslovak Mathematical Journal

It is known that a ring R is left Noetherian if and only if every left R -module has an injective (pre)cover. We show that ( 1 ) if R is a right n -coherent ring, then every right R -module has an ( n , d ) -injective (pre)cover; ( 2 ) if R is a ring such that every ( n , 0 ) -injective right R -module is n -pure extending, and if every right R -module has an ( n , 0 ) -injective cover, then R is right n -coherent. As applications of these results, we give some characterizations of ( n , d ) -rings, von Neumann regular rings and semisimple rings....

𝒯 -semiring pairs

Jaiung Jun, Kalina Mincheva, Louis Rowen (2022)

Kybernetika

We develop a general axiomatic theory of algebraic pairs, which simultaneously generalizes several algebraic structures, in order to bypass negation as much as feasible. We investigate several classical theorems and notions in this setting including fractions, integral extensions, and Hilbert's Nullstellensatz. Finally, we study a notion of growth in this context.

𝔤 -quasi-Frobenius Lie algebras

David N. Pham (2016)

Archivum Mathematicum

A Lie version of Turaev’s G ¯ -Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a 𝔤 -quasi-Frobenius Lie algebra for 𝔤 a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra ( 𝔮 , β ) together with a left 𝔤 -module structure which acts on 𝔮 via derivations and for which β is 𝔤 -invariant. Geometrically, 𝔤 -quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic...

Currently displaying 1 – 20 of 158

Page 1 Next