Fibre Functors of finite dimensional comodules.
We consider the poset of all non-empty finite subsets of the set of natural numbers, use the poset structure to topologise it with the Alexandrov topology, and call the thus obtained topological space the universal partition space. Then we show that it is a classifying space for finite closed coverings of compact quantum spaces in the sense that any such a covering is functorially equivalent to a sheaf over this partition space. In technical terms, we prove that the category of finitely supported...
For any module M over an associative ring R, let σ[M] denote the smallest Grothendieck subcategory of Mod-R containing M. If σ[M] is locally finitely presented the notions of purity and pure injectivity are defined in σ[M]. In this paper the relationship between these notions and the corresponding notions defined in Mod-R is investigated, and the connection between the resulting Ziegler spectra is discussed. An example is given of an M such that σ[M] does not contain any non-zero finitely presented...
A concrete category is (algebraically) universal if any category of algebras has a full embedding into , and is almost universal if there is a class of -objects such that all non-constant homomorphisms between them form a universal category. The main result of this paper fully characterizes the finitely generated varieties of -lattices which are almost universal.
We introduce the notions of silting comodules and finitely silting comodules in quasi-finite category, and study some properties of them. We investigate the torsion pair and dualities which are related to finitely silting comodules, and give the equivalences among silting comodules, finitely silting comodules, tilting comodules and finitely tilting comodules.