Ring epimorphisms and .
We define and investigate a generalization of the notion of convex compacta. Namely, for semiconvex combination in a semiconvex compactum we allow the existence of non-trivial loops connecting a point with itself. It is proved that any semiconvex compactum contains two non-empty convex compacta, the center and the weak center. The center is the largest compactum such that semiconvex combination induces a convex structure on it. The convex structure on the weak center does not necessarily coincide...