On the cohomology sequence in a semiabelian category.
We prove that every additive category has a unique maximal exact structure in the sense of Quillen.
This note compares τ-tilting modules and maximal rigid objects in the context of 2-Calabi-Yau triangulated categories. Let be a 2-Calabi-Yau triangulated category with suspension functor S. Let R be a maximal rigid object in and let Γ be the endomorphism algebra of R. Let F be the functor . We prove that any τ-tilting module over Γ lifts uniquely to a maximal rigid object in via F, and in turn, that projection from to mod Γ sends the maximal rigid objects which have no direct summands from add...
We study the problem of classifying triangulated categories with finite-dimensional morphism spaces and finitely many indecomposables over an algebraically closed field . We obtain a new proof of the following result due to Xiao and Zhu: the Auslander-Reiten quiver of such a category is of the form where is a disjoint union of simply-laced Dynkin diagrams and a weakly admissible group of automorphisms of . Then we prove that for ‘most’ groups , the category is standard,i.e.-linearly...
In the class of all exact torsion theories the torsionfree classes are cover (precover) classes if and only if the classes of torsionfree relatively injective modules or relatively exact modules are cover (precover) classes, and this happens exactly if and only if the torsion theory is of finite type. Using the transfinite induction in the second half of the paper a new construction of a torsionfree relatively injective cover of an arbitrary module with respect to Goldie’s torsion theory of finite...
For an integer , we introduce a simultaneous generalization of -exact categories and -angulated categories, referred to as one-sided -suspended categories. Notably, one-sided -angulated categories are specific instances of this structure. We establish a framework for transitioning from these generalized categories to their -angulated counterparts. Additionally, we present a method for constructing -angulated quotient categories from Frobenius -prile categories. Our results unify and extend...
Recently, Rim and Teply , using the notion of -exact modules, found a necessary condition for the existence of -torsionfree covers with respect to a given hereditary torsion theory for the category -mod of all unitary left -modules over an associative ring with identity. Some relations between -torsionfree and -exact covers have been investigated in . The purpose of this note is to show that if is Goldie’s torsion theory and is a precover class, then is a precover class whenever...