Travaux de Karoubi sur la K-théorie
Sur une pseudo-variété de dimension paire à une singularité conique isolée, des triplets spectraux sont construits à partir d’une classe d’opérateurs différentiels elliptiques de type Fuchs, contenant les opérateurs de Dirac à coefficients dans des fibrés plats dans la direction radiale. Ces derniers engendrent, sous une hypothèse raisonnable, le groupe de -homologie pair tensorisé par de la pseudo-variété et leur caractère de Chern est calculé.
Let be the pushout of two groups , i = 1,2, over a common subgroup G, and H be the double mapping cylinder of the corresponding diagram of classifying spaces . Denote by ξ the diagram , where p is the natural map onto the unit interval. We show that the groups which occur in Waldhausen’s description of coincide with the continuously controlled groups , defined by Anderson and Munkholm. This also allows us to identify the continuously controlled groups which are known to form a homology...