A geometric invariant of discrete groups.
2000 Mathematics Subject Classification: Primary 20F55, 13F20; Secondary 14L30.We construct invariant polynomials for the reflection groups [3, 4, 3] and [3, 3, 5] by using some special sets of lines on the quadric P1 × P1 in P3. Then we give a simple proof of the well known fact that the ring of invariants are rationally generated in degree 2,6,8,12 and 2,12,20,30.
We present a groupoid which can be converted into a Boolean algebra with respect to term operations. Also conversely, every Boolean algebra can be reached in this way.
We prove that an orthomodular lattice can be considered as a groupoid with a distinguished element satisfying simple identities.
It is proved that if a finite abelian group is factored into a direct product of lacunary cyclic subsets, then at least one of the factors must be periodic. This result generalizes Hajós's factorization theorem.