over complex quadratic number fields. I.
We describe the branching rule from to , where the latter is embedded via its action on binary cubic forms. We obtain both a numerical multiplicity formula, as well as a minimal system of generators for the geometric realization of the rule.
In this note we obtain a necessary and sufficient condition for a ring to be -weakly regular (i) When is a ring with identity and without divisors of zero (ii) When is a ring without divisors of zero. Further it is proved in a -weakly regular ring with identity and without units every element is a zero divisor.
The aim of this short survey is to give a quick introduction to the Salvetti complex as a tool for the study of the cohomology of Artin groups. In particular we show how a spectral sequence induced by a filtration on the complex provides a very natural and useful method to study recursively the cohomology of Artin groups, simplifying many computations. In the last section some examples of applications are presented.
Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les groupes exceptionnels de type sur un corps local. Nous décrivons chaque construction concrètement en termes de réseaux : l’immeuble, les appartements, la structure simpliciale, les schémas en groupes associés. Les appendices traitent de l’analogie avec les espaces symétriques réels et des espaces symétriques associés à réel et complexe.
Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les groupes exceptionnels des type ou sur un corps local. Nous décrivons chaque construction concrètement en termes de réseaux : l’immeuble, les appartements, la structure simpliciale, les schémas en groupes associés.
We study systematically the natural generalization of Schreier's extension theory to obtain proper loops and show that this construction gives a rich family of examples of loops in all traditional common, important loop classes.
We prove that the bicrossed product of two groups is a quotient of the pushout of two semidirect products. A matched pair of groups (H;G; α; β) is deformed using a combinatorial datum (σ; v; r) consisting of an automorphism σ of H, a permutation v of the set G and a transition map r: G → H in order to obtain a new matched pair (H; (G; *); α′, β′) such that there exists a σ-invariant isomorphism of groups H α⋈β G ≅H α′⋈β′ (G, *). Moreover, if we fix the group H and the automorphism σ ∈ Aut H then...